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Dextromethorphan differentially affects opioid antinociception

in rats
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1 Opioid drugs such as morphine and meperidine are widely used in clinical pain management,
although they can cause some adverse effects. A number of studies indicate that N-methyl-D-aspartate
(NMDA) receptors may play a role in the mechanism of morphine analgesia, tolerance and
dependence. Being an antitussive with NMDA antagonist properties, dextromethorphan (DM) may
have some therapeutic benefits when coadministered with morphine. In the present study, we
investigated the effects of DM on the antinociceptive effects of different opioids. We also investigated
the possible pharmacokinetic mechanisms involved.

2 The antinociceptive effects of the pu-opioid receptor agonists morphine (5Smgkg™!, s.c.), meperidine
(25mgkg™', s.c.) and codeine (25mgkg™", s.c.), and the x-opioid agonists nalbuphine (8 mgkg™", s.c.)
and U-50,488H (20 mgkg', s.c.) were studied using the tail-flick test in male Sprague-Dawley rats.
Coadministration of DM (20mgkg ™", i.p.) with these opioids was also performed and investigated.
3 The pharmacokinetic effects of DM on morphine and codeine were examined, and the free
concentration of morphine or codeine in serum was determined by HPLC.

4 It was found that DM potentiated the antinociceptive effects of some p-opioid agonists but not
codeine or x-opioid agonists in rats. DM potentiated morphine’s antinociceptive effect, and acutely
increased the serum concentration of morphine. In contrast, DM attenuated the antinociceptive effect
of codeine and decreased the serum concentration of its active metabolite (morphine).

5 The pharmacokinetic interactions between DM and opioids may partially explain the differential

effects of DM on the antinociception caused by opioids.
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Introduction

The opioid drugs such as morphine, meperidine, etc. are still
the most effective analgesic drugs used in the treatment of
severe and chronic pain. There are three major types of opioid
receptors, mu (u), delta () and kappa (i), which are expressed
in the brain and spinal cord. The opioid drugs act on the
corresponding opioid receptors and produce their antinoci-
ceptive effects. However, side effects such as vomiting,
pruritus, respiratory depression, tolerance and dependence
have restricted their clinical use. Dextromethorphan (DM) is
the dextrorotatory isomer of levomethorphan, but lacks
opioid-like activity and is best known for its antitussive effects
(Wang et al., 1977). DM has been demonstrated to have
anticonvulsant (Ferkany er al.,, 1988) and neuroprotective
properties through antagonizing the glycine and Mg+ sites, as
well as the phencyclidine-binding site on the N-methyl-D-
aspartate (NMDA) receptor complex. DM has been shown to
prevent the development of tolerance to the antinociceptive
effects of morphine in rodents (Elliott ez al., 1994a; Mao et al.,
1996; Manning et al., 1996). DM also attenuated signs of
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naloxone-precipitated withdrawal in morphine-dependent rats
(Mao et al., 1996; Manning et al., 1996). DM is a particularly
attractive candidate for clinical use since it has been dispensed
as a nonprescription drug for over 40 years and is known to
have a wide margin of safety. It has been reported that
coadministration of DM with morphine or methadone could
potentiate their antinociceptive effects (Grass et al., 1996;
Hoffmann & Wiesenfeld-Hallin, 1996; Bulka er al., 2002);
however, the mechanism is not clear.

There are two major aims in the present study. One is to
investigate the effects of DM on the antinociceptive effects of
different opioids; the second is to investigate the possible
pharmacokinetic mechanism involved.

Methods
Animals

Male Sprague-Dawley rats, weighing 350-400g, were pur-
chased from the National Experimental Animal Centre,
Taipei, Taiwan. All rats were kept in an animal room with
a 12h light/dark cycle, at a temperature of 25+2°C and
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humidity of 55%. Standard diet and water were provided ad
libitum. The animals were acclimated for at least 3 days before
the experiments. The care of animals was carried out in
accordance with institutional and international standards
(Principles of Laboratory Animal Care, NIH) and the protocol
has got approval from the Institutional Animal Care and Use
Committee of National Defense Medical Center, Taiwan,
R.O.C.

Determination of the antinociceptive effect of drugs

Selected doses of opioids with submaximal antinociceptive
effect (morphine Smgkg~', meperidine 25mgkg~', codeine
25mgkg~', nalbuphine 8 mgkg™' or U-50,488H 20mgkg™")
were administered to different groups of rats subcutaneously
(s.c.). DM (20mgkg™'; i.p.) was coadministered with the
opioid in other comparative groups. Saline (I ml kg~'; i.p.) was
administered in control group. There were at least six rats in
each group and different rats were used in each experiment.
Drug-induced antinociception was evaluated using the tail-
flick test (Amour & Smith, 1941). Using a tail-flick apparatus
(Model: DS-20, Ugo Basile, Italy), tail-flick latency was
recorded at 30, 60, 90, 120, 150, 180min after drug
administration. The intensity of the heat source was set to
make the basal tail-flick latency to be controlled between 2.5
and 3.5 for all animals (cutoff: 10s). The area under the time—
response curve (AUC) was calculated using the Trapezoidal
and Simpson’s rules. The AUC value was regarded as an index
of the antinociceptive effect of the drug(s).

In vivo pharmacokinetic study

Individual rats were placed in a restrainer, and blood (0.5-1 ml)
was collected from the tail vein at the 30, 60, 90, and 150 min
after drug administration. The blood was collected from the
same animal at different time points, and the animals were
not used in the tail-flick test. The whole blood sample was
centrifuged at 3000 x g for 10min at 4°C. The serum was
collected and filtered through Millipore Amicon Microcon
YM-3 centrifugal filters (MW cut-off 3000) at 17,800 x g for
40 min at 4°C. The recovery rate of the filtration is 100%. The
filtered sample was then injected into the high-performance
liquid chromatography (HPLC) system for the measurement
of free drug concentration. The free form of morphine was
determined as described below in HPLC analysis.

High-performance liquid chromatography (HPLC
analysis)

We used a HPLC method for the quantification of the
morphine concentration in serum. Quantification was per-
formed by HPLC-coupled electrochemical detection. Using
linear regression, calibration curves (standard curves) were
constructed and covered a wide range of concentrations (10—
1000 nM). The samples were compared with the standard
curves to determine their contents of drugs. The electroche-
mical chromatographic system consisted of a pump (LC-
10AD, Shimadzu, Japan), a TSKgel ODS-80T,; C18 column
(Tosoh, Japan), and an electrochemical detector (ESA
Coulochem II, Chelmsford, MA, U.S.A.) containing a 5020
guard cell and 5010 analytical cells. For the determination of
the free form of morphine in serum, 20 ul samples were injected

into the HPLC system. The voltages of the guard cell and
analytical cells were set at 650 and 550mV (detecting
potential), respectively. The mobile phase (ESA MDTM
mobile phase) consisted of 75mM sodium dehydrogenate
phosphate (monohydrate), 1.7mM I-octanesulfonic acid (so-
dium salt), 100ull™" triethylamine, 25um EDTA, 10%
acetonitrile, pH 3.00, which was delivered at a flow rate of

1.0ml min~".

Statistical analysis

The data were expressed as means+s.e.m. One-way ANOVA
and Newman—Keuls test were used to analyze the data. A
difference was considered to be significant at P<0.05 or
P<0.01.

Chemicals

Morphine hydrochloride, meperidine, and codeine were
purchased from the National Bureau of Controlled Drugs,
National Health Administration, Taipei, Taiwan, R.O.C.
Nalbuphine was purchased from Mallinckrodt Inc. (St Louis,
Missouri, U.S.A.). U-50,488H was a gift from Dr Chen-Yu
Cheng, who prepared it as described in our previous paper
(Su et al., 1998). All other chemicals were supplied by Sigma
(St Louis, MO, U.S.A.). The chemicals were all of analytical
grade and the solvents were of HPLC grade.

Results

DM potentiated the antinociceptive effects of morphine
and meperidine but not codeine or kappa-opioid agonists
in rats

As shown in Figure 1, coadministration of DM (20 mgkg™")
acutely and significantly increased the antinociceptive effect of
morphine (5mgkg™") (P<0.01). Similarly, coadministration of
DM (20mgkg™') also significantly potentiated the antinoci-
ceptive effect of meperidine (mgkg~'). However, DM did not
potentiate the antinociceptive effect of another p-opioid
agonist — codeine (25mgkg™') — and, in addition, it decreased
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Figure 1 The effect of DM (20mgkg™', i.p.) on the antinociceptive
effect of mu opioid agonists: morphine (M; 5mgkg ', s.c.);
meperidine (Mep; 25mgkg™', s.c.) and codeine (C; 25mgkg™',
s.c.). Values are means+s.e.m. ANOVA and Newman—Keuls test
were used to analyze the data. **P<0.01 represents a significant
difference between the opioid and opioid + DM groups.
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codeine’s effect. Conversely, DM did not affect the antinoci-
ceptive effect of the x-opioid agonists: U-50,488H (20 mgkg™")
or nalbuphine (8 mgkg™") (Figure 2). These results indicate
that DM had differential effects on the antinociceptive effect
of different opioid agonists in rats. Most interestingly, DM
showed opposite effects on opioid agonists acting on the same
u-opioid receptors, such as morphine and codeine. In order to
investigate whether pharmacokinetic mechanisms are involved,
we carried out the following study in pharmacokinetics.

The effect of DM on the serum concentration
of the free form of morphine

When DM was coadministered with morphine, the serum
concentration of morphine (free form) was higher than in the
morphine group after drug administration, as shown in Figure
3a and b. In contrast, when DM was coadministered with
codeine, the serum concentration of morphine (the active
metabolite of codeine) was lower than in the codeine group
(Figure 4). These data indicate that DM increased the serum
concentration of morphine and potentiated the antinociceptive
effect of morphine (Figures 1 and 3). Conversely, DM decreased
the serum concentration of morphine and therefore attenuated
the antinociceptive effect of codeine (Figures 1 and 4).

Discussion

A number of studies indicate that NMDA receptor antagonists
such as MK-801, LY274614 and ketamine can attenuate the
development of morphine tolerance and dependence (Kest
et al., 1993; Gutstein & Trujillo, 1993; Elliott et al., 1994b;
Tiseo et al., 1994; Trujillo & Akil, 1994; Herman et al., 1995;
Manning et al., 1996; Mao et al., 1996). However, MK-801 has
been shown to have great toxicity to animals and cannot be
used in clinical treatment. Owing to its NMDA antagonist
action and lower toxic properties, DM has been used
with morphine to test if DM could prevent the development
of morphine tolerance and dependence. Studies have shown
that DM can attenuate and reverse analgesic tolerance to
morphine (Elliott et al., 1994a; Mao et al., 1996). On the
other hand, recent animal studies have reported the potentia-
tion of opioid antinociception by coadministration of NMDA
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Figure 2 The effect of DM (20mgkg ™', i.p.) on the antinociceptive
effect of kappa opioid agonists: U-50,488 (U-50; 20mgkg™", s.c.)
and nalbuphine (Nal; 8 mgkg™', s.c.). Values are means+s.e.m.
ANOVA and Newman—Keuls test were used to analyze the data.

receptor antagonists such as MK-801, ketamine and DM
(Grass et al., 1996; Hoffmann & Wiesenfeld-Hallin, 1996; Zhu
et al., 2003).

In the present study, we found that DM significantly
potentiated the antinociceptive effects of certain u-opioid
agonists such as morphine or meperidine, but not the x-opioid
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Figure 3 The pharmacokinetic effect of dextromethorphan (DM;
20mgkg™', i.p.) on the morphine (M; 5mgkg™', s.c.). (a) Time
course of the serum concentration of morphine (nM) after drug
administration. (b) Area under curve (AUC) value of upper plot in
(a). ANOVA and Newman—Keuls test were used to analyze the data.
Values are meansts.e.m. *P<0.05, **P<0.01 represents a sig-
nificant difference between the M and M + DM groups at the same
time. #P<0.01 represents a significant difference of AUC value
between the M and M + DM groups.
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Figure 4 The pharmacokinetic effect of dextromethorphan (DM;
20mgkg™', i.p.) on the codeine (C; 25mgkg™', s.c.). ANOVA and
Newman-Keuls test were used to analyze the data. Values are
means+s.e.m. **P<0.01 represents a significant difference between
the C and C+ DM groups at the same time.
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agonists U-50,488H or nalbuphine in rats. These results are
consistent with the previous report that DM potentiates the
antinociceptive effects of u- but not k-opioid agonists in a mouse
model of acute pain (Allen et al, 2002; Baker et al., 2002).
Morphine is a natural opiate that is metabolized mainly through
glucuronidation by uridine diphosphate glucuronosyl transferase
(UGT) 2B enzymes in the liver (Pritchard et al., 1994; Coffman
et al., 1997; King et al., 2000). DM undergoes O-demethylation
to dextrorphan and N-demethylation to 3-methoxymorphinan.
The N-demethylation of DM to 3-methoxymorphinan is
catalyzed primarily by cytochrome P450 3A (CYP3A) enzymes
in the liver. The O-demethylation pathway to dextrorphan is
catalyzed primarily by cytochrome P450 2D6 (CYP2D6)
enzymes in the human liver (Dayer et al., 1988; Ladona et al.,
1991; Jacqz-Aigrain & Cresteil, 1992; Jacqz-Aigrain et al., 1993).

As mentioned above, morphine and DM are metabolized in
different metabolic pathways. How could DM increase the
serum concentration of morphine? The exact mechanism is
unknown. However, liver microsomal studies have shown
inhibition of morphine-3-glucuronide (M3G) formation by
DM (Wabhlstrom et al., 1988) and this may play a role in the
mechanism of DM to potentiate morphine antiniciceptive
effect. On the other hand, in our other studies, we found that
intrathecal DM also potentiated the antinociceptive effect of
morphine at the spinal level, in addition to the potentiation by
DM injected systemically (Chow et al., 2004). Therefore, apart
from the pharmacokinetic factor, there must be some other
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factor(s) may be one of the important mechanisms involved.
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